💥 Gate广场活动: #FST创作大赛# 💥
在 Gate广场 发布 CandyDrop 第71期:CandyDrop x FreeStyle Classic Token (FST) 相关原创内容,即有机会瓜分 3,000 FST 奖励!
📅 活动时间:2025年8月27日 – 9月2日
📌 参与方式:
发布原创内容,主题需与 FST 或 CandyDrop 活动相关
内容不少于 80 字
帖子添加话题: #FST创作大赛#
附上 CandyDrop 参与截图
🏆 奖励设置:
一等奖(1名):1,000 FST
二等奖(3名):500 FST/人
三等奖(5名):200 FST/人
📄 注意事项:
内容必须原创,禁止抄袭或刷量
获奖者需完成 Gate 广场身份认证
活动最终解释权归 Gate 所有
活动详情链接: https://www.gate.com/announcements/article/46757
苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率
原文来源:机器之心
在生成式 AI 时代,扩散模型已经成为图像、视频、3D、音频和文本生成等生成式 AI 应用的流行工具。然而将扩散模型拓展到高分辨率领域仍然面临巨大挑战,这是因为模型必须在每个步骤重新编码所有的高分辨率输入。解决这些挑战需要使用带有注意力块的深层架构,这使得优化更困难,消耗的算力和内存也更多。
怎么办呢?最近的一些工作专注于研究用于高分辨率图像的高效网络架构。但是现有方法都没有展示出超过 512×512 分辨率的效果,并且生成质量落后于主流的级联或 latent 方法。
我们以 OpenAI DALL-E 2、谷歌 IMAGEN 和英伟达 eDiffI 为例,它们通过学习一个低分辨率模型和多个超分辨率扩散模型来节省算力,其中每个组件都单独训练。另一方面,latent 扩散模型(LDM)仅学习低分辨率扩散模型,并依赖单独训练的高分辨率自编码器。对于这两种方案,多阶段式 pipeline 使训练与推理复杂化,从而往往需要精心调整或进行超参。
本文中,研究者提出了俄罗斯套娃式扩散模型(Matryoshka Diffusion Models,MDM)它是用于端到端高分辨率图像生成的全新扩散模型。代码很快将释出。
该研究提出的主要观点是将低分辨率扩散过程作为高分辨率生成的一部分,通过使用嵌套 UNet 架构在多个分辨率上执行联合扩散过程。
该研究发现:MDM 与嵌套 UNet 架构一起实现了 1)多分辨率损失:大大提高了高分辨率输入去噪的收敛速度;2)高效的渐进式训练计划,从训练低分辨率扩散模型开始,按照计划逐步添加高分辨率输入和输出。实验结果表明,多分辨率损失与渐进式训练相结合可以让训练成本和模型质量获得更好的平衡。
该研究在类条件图像生成以及文本条件图像和视频生成方面评估了 MDM。MDM 让训练高分辨率模型无需使用级联或潜在扩散(latent diffusion)。消融研究表明,多分辨率损失和渐进训练都极大地提高了训练效率和质量。
我们来欣赏以下 MDM 生成的图片和视频。
研究者介绍称,MDM 扩散模型在高分辨率中进行端到端训练,同时利用层级结构的数据形成。MDM 首先在扩散空间中泛化了标准扩散模型,然后提出了专用的嵌套架构和训练流程。
首先来看如何在扩展空间对标准扩散模型进行泛化。
与级联或 latent 方法的不同之处在于,MDM 通过在一个扩展空间中引入多分辨率扩散过程,学得了具有层级结构的单个扩散过程。具体如下图 2 所示。
接下来看嵌套架构(NestedUNet)如何工作。
与典型的扩散模型类似,研究者使用 UNet 网络结构来实现 MDM,其中并行使用残差连接和计算块以保留细粒度的输入信息。这里的计算块包含多层卷积和自注意力层。NestedUNet 与标准 UNet 的代码分别如下。
研究者使用常规去噪目标在多个分辨率下训练 MDM,如下公式 (3) 所示。
这一训练方法从一开始就避免了高成本的高分辨率训练,加速了整体收敛。不仅如此,他们还合并了混合分辨率训练,该训练方法在单个 batch 中同时训练具有不同最终分辨率的样本。
实验及结果
MDM 是一种通用技术,适用于可以逐步压缩输入维度的任何问题。MDM 与基线方法的比较如下图 4 所示。