💙 Gate广场 #Gate品牌蓝创作挑战# 💙
用Gate品牌蓝,描绘你的无限可能!
📅 活动时间
2025年8月11日 — 8月20日
🎯 活动玩法
1. 在 Gate广场 发布原创内容(图片 / 视频 / 手绘 / 数字创作等),需包含 Gate品牌蓝 或 Gate Logo 元素。
2. 帖子标题或正文必须包含标签: #Gate品牌蓝创作挑战# 。
3. 内容中需附上一句对Gate的祝福或寄语(例如:“祝Gate交易所越办越好,蓝色永恒!”)。
4. 内容需为原创且符合社区规范,禁止抄袭或搬运。
🎁 奖励设置
一等奖(1名):Gate × Redbull 联名赛车拼装套装
二等奖(3名):Gate品牌卫衣
三等奖(5名):Gate品牌足球
备注:若无法邮寄,将统一替换为合约体验券:一等奖 $200、二等奖 $100、三等奖 $50。
🏆 评选规则
官方将综合以下维度评分:
创意表现(40%):主题契合度、创意独特性
内容质量(30%):画面精美度、叙述完整性
社区互动度(30%):点赞、评论及转发等数据
突破性技术!开源多模态模型—MiniGPT-5
原文来源:AIGC开放社区
多模态生成一直是OpenAI、微软、百度等科技巨头的重要研究领域,但如何实现连贯的文本和相关图像是一个棘手的难题。
为了突破技术瓶颈,加州大学圣克鲁斯分校研发了MiniGPT-5模型,并提出了全新技术概念“Generative Vokens ",成为文本特征空间和图像特征空间之间的“桥梁”,实现了普通训练数据的有效对齐,同时生成高质量的文本和图像。
为了评估MiniGPT-5的效果,研究人员在多个数据集上进行了测试,包括CC3M、VIST和MMDialog。结果显示,MiniGPT-5在多个指标上都优于多个对比基线,能够生成连贯、高质量的文本和图像。
例如,在VIST数据集上,MiniGPT-5生成的图像CLIP分数高于fine-tunedStable Diffusion 2; 在人类评估中,MiniGPT-5生成的语言连贯性更好(57.18%),图像质量更高(52.06%),多模态连贯性更强(57.62%)。
开源地址:
论文地址:
2)提出了无需完整图像描述的双阶段训练策略:第一阶段,专注文本与图像的简单对齐;第二阶段,进行多模态细粒度特征学习。
3)在训练中引入了“无分类器指导”技术,可有效提升多模态生成的内容质量。主要模块架构如下。
Generative Vokens
MiniGPT-5的核心创新就是提出了“Generative Vokens”技术概念,实现了大语言模型与图像生成模型的无缝对接。
具体来说,研究人员向模型的词表中加入了8个特殊的Voken词元[IMG1]-[IMG8]。这些Voken在模型训练时作为图像的占位符使用。
在输入端,图像特征会与Voken的词向量拼接,组成序列输入。在输出端,模型会预测这些Voken的位置,对应的隐状态h_voken用于表示图像内容。
在Stable Diffusion中,ˆh_voken作为指导图像生成的条件输入。整个pipeline实现了从图像到语言模型再到图像生成的对接。
这种通过Voken实现对齐的方式,比逆向计算要直接,也比利用图像描述更为通用。简单来说,Generative Vokens就像是一座“桥梁”,使不同模型域之间信息传递更顺畅。
双阶段训练策略
考虑到文本和图像特征空间存在一定的域差异,MiniGPT-5采用了两阶段的训练策略。
**第一阶段是单模态对齐阶段:**只使用单个图像-文本对的数据,如CC3M。模型学习从图像标题生成对应的Voken。同时,加入辅助的图像标题损失,帮助Voken与图像内容对齐。
**第二阶段是多模态学习阶段:**使用包含连续多模态样本的数据,如VIST,进行微调。设置不同的训练任务,包括生成文本、生成图像和同时生成两者。增强了模型处理多模态信息的能力。
这种分阶段策略,可以缓解直接在有限数据上训练带来的问题。先进行粗粒度对齐,再微调细粒度特征,并提升了模型的表达能力和鲁棒性。
无分类器指导
为进一步提升生成文本和图像的连贯性,MiniGPT-5还采用了“无分类器指导”的技术。
其核心思想是,在图像扩散过程中,以一定概率用零特征替换条件Voken,实现无条件生成。
在推理时,将有条件和无条件的结果作为正负样本,模型可以更好地利用两者的对比关系,产生连贯的多模态输出。这种方法简单高效,不需要引入额外的分类器,通过数据对比自然指导模型学习。
文本到图像生成模型
MiniGPT-5使用了Stable Diffusion 2.1和多模态模型MiniGPT-4作为文本到图像生成模型。可以根据文本描述生成高质量、高分辨率的图片。
Stable Diffusion使用Diffusion模型和U-Net作为主要组件。Diffusion模型可以将图片表示成噪声数据,然后逐步进行去噪和重构。
U-Net则利用文本特征作为条件,指导去噪过程生成对应的图片。相比GAN,Diffusion模型更稳定,生成效果也更清晰逼真。
文本空间损失帮助模型学习标记的正确位置,而潜在扩散损失直接将标记与适当的视觉特征对齐。由于生成Vokens的特征直接由图像引导,因此,不需要图像的全面描述就能实现无描述学习。
研究人员表示,MiniGPT-5的最大贡献在于实现了文本生成和图像生成的有效集成。只需要普通的文本、图像进行预训练,就可以进行连贯的多模态生成,而无需复杂的图像描述。这为多模态任务提供了统一的高效解决方案。