🎉 亲爱的广场小伙伴们,福利不停,精彩不断!目前广场上这些热门发帖赢奖活动火热进行中,发帖越多,奖励越多,快来 GET 你的专属好礼吧!🚀
🆘 #Gate 2025年中社区盛典# |广场十强内容达人评选
决战时刻到!距离【2025年中社区盛典】广场达人评选只剩 1 天,你喜爱的达人,就差你这一票冲进 C 位!在广场发帖、点赞、评论就能攒助力值,帮 Ta 上榜的同时,你自己还能抽大奖!iPhone 16 Pro Max、金牛雕塑、潮流套装、合约体验券 等你抱走!
详情 👉 https://www.gate.com/activities/community-vote
1️⃣ #晒出我的Alpha积分# |晒出 Alpha 积分&收益
Alpha 积分党集合!带话题晒出你的 Alpha 积分图、空投中奖图,即可瓜分 $200 Alpha 代币盲盒,积分最高直接抱走 $100!分享攒分秘籍 / 兑换经验,中奖率直线上升!
详情 👉 https://www.gate.com/post/status/12763074
2️⃣ #ETH百万矿王争霸赛# |ETH 链上挖矿晒收益
矿工集结!带话题晒出你的 Gate ETH 链上挖矿收益图,瓜分 $400 晒图奖池,收益榜第一独享 $200!谁才是真 ETH 矿王?开晒见分晓!
详情 👉 https://www.gate.com/pos
AI+汽车|OpenAI 基金 500 万美金投资 Ghost Autonomy,布局自动驾驶
来源:深思SenseAI
作为消费类汽车可扩展自动驾驶软件的先驱, Ghost Autonomy 2023 年 11 月 8 日宣布获得 OpenAI 创业基金 500 万美元的投资,用于将大规模、多模态大语言模型(MLLM)引入自动驾驶。这笔资金将用于加速目前正在进行的基于 LLM 的复杂场景理解研究和开发,这正是下阶段的城市自动驾驶所需要的。这轮融资之后,该公司的融资总额达到 2.2 亿美元。
01. 优化多模态大语言模型以实现自动驾驶
OpenAI 首席运营官兼 OpenAI 初创基金经理 Brad Lightcap 表示:"多模态模型有可能将 LLM 的适用性扩展到包括自动驾驶和汽车在内的许多新场景,能够通过结合视频、图像和声音来理解并得出结论,因此可能会创造出一种全新的方式来理解场景并导航于复杂或不寻常的环境。"
LLM 几乎每天都在不断提高自己的能力,并扩展到新的应用领域,颠覆着各行各业现有的计算架构。基于 Ghost Autonomy ,大语言模型也将对自动驾驶软件堆栈产生深远影响,而大语言模型新增的多模态功能(在接受文本输入的同时接受图像和视频输入)会加速其在自动驾驶用例中的应用。
多模态大语言模型(MLLM)具有对驾驶场景进行整体推理的潜在能力,可将感知和规划结合起来,为自动驾驶汽车提供更深入的场景理解,并通过对场景的整体考虑为正确的驾驶操作提供指导。
MLLMs 有可能成为自动驾驶软件的新架构,能够处理长尾的罕见复杂驾驶场景。现有的单一任务网络局限于其狭窄的范围和训练,而 LLM 允许自动驾驶系统全面推理驾驶场景,利用广泛的世界知识来驾驭复杂和不寻常的情况,甚至是从未见过的情况。
对商用和开源多模态大语言模型进行微调和定制的能力不断增强,有可能大大加快 MLLM 在自动驾驶领域的发展。Ghost 目前正在不断改进 MLLM 在自动驾驶领域的应用,同时在道路上不断测试和验证这种能力。Ghost 的开发车队会将数据发送到云端进行 MLLM 分析,同时还在积极开发利用 MLLM 洞察并反馈回汽车的自动驾驶功能。
02.自动驾驶大模型架构
自动驾驶大模型为重新全面思考自动驾驶的技术堆栈提供了机会。
当今的自动驾驶技术存在脆弱性问题。它们往往是 "自下而上 "构建的,即在复杂的传感器、地图和计算堆栈之上,由许多拼凑起来的人工智能网络和驾驶软件逻辑来执行感知、传感器融合、驾驶规划和驾驶执行等各种任务。这种方法导致了一个难以解决的 "长尾 "问题——在道路上发现的每一个角落都会导致越来越多的软件补丁,以试图实现安全迭代。**当场景变得过于复杂,车载人工智能无法再安全驾驶时,汽车就必须 "后退"。**如果是机器人出租车,则由远程操作中心的远程人员进行操作;如果是驾驶辅助系统,则提醒驾驶员接管。
实现用于自动驾驶的 MLLMs 需要一种新的架构,因为当今的 MLLMs 过于庞大,无法在嵌入式车载处理器上运行。因此需要一种混合架构,即在云上运行的大规模 MLLM 与在车内运行的经过专门训练的模型进行协作,在汽车和云之间分担自主任务以及长期与短期规划。
建立、交付和验证这种大型自动驾驶架构的安全性需要时间,但这并不意味着 MLLM 不能更快地影响自动驾驶堆栈。MLLMs 可以从改进数据中心流程入手,通过数据中心对自动驾驶训练数据进行整理、标注、模拟,并对车载网络进行训练和验证。MLLMs 还可以与现有的自动驾驶架构相连接,并为现有的自动驾驶架构增添洞察力,通过不断增强它们的能力,以承担越来越多的自动驾驶任务。
参考材料