🎉 Gate.io动态 #创作者成长激励计划# 火热进行中!您报名参与发帖了吗?
赶紧报名参与发帖,茶具套装、Gate.io纪念章、合约体验券等价值 $2,000 丰厚大奖等你来拿!
参与方式:
1.点击活动表单完成报名获取获奖资格 👉️ https://www.gate.io/questionnaire/6550
2.随后在动态发布帖子,发布帖子越多越优质获奖机会越大!
📌 任何与加密相关内容均可参与,创作者们请尽情发帖!
🎁活动奖励:
🔹榜单 Top40 及新人 Top10 可赢茶具套装、国际米兰保温杯、Gate.io纪念章、合约体验券等超$2,000好礼!
🔹上榜创作者还将解锁AMA访谈、荣誉海报、V5标识、精选推荐、动态大使等流量扶持,助你提升社区影响力!
活动截止至:5月6日00:00 (UTC+8)
详情:https://www.gate.io/announcements/article/44513
创作者们,请尽情发帖,争夺创作榜单,赢取丰厚创作大奖及流量曝光!
详解 zkML:迈向可验证人工智能的未来
撰文:Avant Blockchain Capital
编译:GWEI Research
背景
在过去的几个月里,人工智能行业出现了多项突破。 GPT4 和 Stable Diffusion 等模型正在改变人们生成软件和互联网以及与之交互的方式。
尽管这些新的 AI 模型具有令人印象深刻的功能,但一些人仍然担心 AI 的不可预测性和一致性问题。例如,在线服务领域缺乏透明度,其中大部分后端工作由 AI 模型运行。验证这些模型是否以预期的方式运行是一项挑战。此外,用户隐私也是一个问题,因为我们提供给模型 API 的所有数据都可用于改进 AI 或被黑客利用。
ZKML 可能是解决这些问题的新方法。通过将可验证和无需信任的属性注入机器学习模型,区块链和 ZK 技术可以形成 AI 对齐的框架。
什么是 ZKML
本文中的零知识机器学习(ZKML)是指在不暴露模型输入或模型参数的情况下,使用 zkSNARK(一种零知识证明)来证明机器学习推理的正确性。根据隐私信息的不同,ZKML 的用例可以分为以下类型:
公共模型 + 私有数据:
私有模型 + 公共数据:
公开模型 + 公开数据:
由于 zkSNARK 将成为加密世界的一项非常重要的技术,ZKML 也有可能改变加密领域。通过在智能合约中加入 AI 能力,ZKML 可以解锁更复杂的链上应用。这种集成在 ZKML 社区中被描述为「赋予区块链眼睛」。
技术瓶颈
然而,ZK-ML 带来了一些当前必须解决的技术挑战。
量化:ZKP 在场上工作,但神经网络在浮点数中训练。这意味着为了使神经网络模型 zk/blockchain 友好,它需要转换为具有完整计算跟踪的固定点算术表示。这可能会牺牲模型性能,因为参数的精度较低。
跨语言翻译:神经网络 AI 模型是用 python 和 cpp 编写的,而 ZKP 电路需要 rust。所以我们需要一个翻译层来将模型转换为基于 ZKP 的运行时。通常这种类型的翻译层是模型特定的,很难设计一个通用的。
ZKP 的计算成本:ZKP 的成本基本上会比原来的 ML 计算高很多。根据 Modulus labs 的实验,对于一个 20M 参数的模型,根据不同的 ZK 证明系统,生成证明需要 1-5 分钟以上的时间,内存消耗在 20-60GB 左右。
智能的成本 — Modulus Labs
现状
即使面临这些挑战,我们也看到 ZKML 引起了加密社区的极大兴趣,并且有一些优秀的团队正在探索这一领域。
基础设施
模型编译器
由于 ZKML 的主要瓶颈是将 AI 模型转换为 ZK 电路,一些团队正在研究 ZK 模型编译器等基础层。从 1 年前的逻辑回归模型或简单的 CNN 模型开始,该领域已经快速进入更复杂的模型。
ZKVM
ZKML 编译器也属于一些更通用的零知识虚拟机领域。
应用
除了基础设施,其他团队也开始探索 ZKML 的应用
Defi:
DeFi 用例的一个示例是 AI 驱动的金库,其中机制由 AI 模型而不是固定策略定义。这些策略可以利用链上和链下数据来预测市场趋势并执行交易。 ZKML 保证链上模型一致。这可以使整个过程自动化且无需信任。 Mondulus Labs 正在构建 RockyBot。该团队训练了一个链上 AI 模型来预测 ETH 价格,并构建了一个智能合约来自动与该模型进行交易。
其他潜在的 DeFi 用例包括 AI 支持的 DEX 和借贷协议。预言机还可以利用 ZKML 提供从链下数据生成的新型数据源。
Gaming:
Modulus labs 推出了一款基于 ZKML 的国际象棋游戏 Leela,所有用户都可以与一个由 ZK 验证的 AI 模型提供支持的机器人一起玩。人工智能能力可以为现有的完全链上游戏带来更多的交互功能。
NFT/ 创作者经济:
EIP-7007:该 EIP 提供了一个接口来使用 ZKML 来验证 AI 为 NFT 生成的内容是否确实来自具有特定输入(提示)的特定模型。该标准可以启用 AI 生成的 NFT 集合,甚至可以为新型创作者经济提供动力。
EIP-7007 项目工作流程
Identity:
Wordcoin 项目正在提供基于用户生物识别信息的人性证明解决方案。该团队正在探索使用 ZKML 让用户以无需许可的方式生成 Iris 代码。当生成 Iris 代码的算法升级后,用户可以自行下载模型并生成证明,而无需去 Orb 站。
采用的关键
考虑到人工智能模型零知识证明的高成本。我们认为 ZKML 的采用可以从一些信任成本高的加密本机用例开始。
我们应该考虑的另一个市场是数据隐私非常重要的行业,例如医疗保健行业。为此,还有其他解决方案,如联邦学习和安全 MPC,但 ZKML 可以利用区块链的可扩展激励网络。
更广泛地大规模采用 ZKML 可能取决于人们失去对现有大型 AI 提供商的信任。会不会出现一些事件,提高整个行业的意识,促使用户考虑可验证的 AI 技术?
总结
ZKML 仍处于早期阶段,有许多挑战需要克服。但随着 ZK 技术的改进,我们认为人们很快就会发现几个具有很强产品市场契合度的 ZKML 用例。这些用例一开始可能看起来很适合。但随着中心化人工智能的力量越来越大,渗透到每一个行业乃至人类生活中,人们可能会在 ZKML 中发现更大的价值。